Վարժ․ 163

ա) (x-1)(x-3)(x-5)>0
(x-1)(x-3)(x-5)=0=> [ x-1=0; x-3=0; x-5=0 => [ x=1; x=3; x=5

x ∈ (1; 3) ∪ (5; +∞)
Պատ՝․ (1; 3) ∪ (5; +∞)
բ) (x-1)(x-2)(x-4)<0
(x-1)(x-2)(x-4)=0=> [ x-1=0; x-2=0; x-4=0 => [ x=1; x=2; x=4

x ∈ (-∞; 1) ∪ (2;4)
Պատ՝․ (-∞; 1) ∪ (2;4)
գ) (x+1)(x-1)(x-2)>0
(x+1)(x-1)(x-2)=0=> [ x+1=0; x-1=0; x-2=0 => [x= -1; x=1; x=2

x ∈ (-1; 1) ∪ (2; +∞)
Պատ՝․ (-1; 1) ∪ (2; +∞)
դ) (x+2)(x+1)(x-3)<0
(x+2)(x+1)(x-3)=0=> [ x+2=0; x+1=0; x-3=0 => [x= -2; x= -1; x=3

x ∈ (-∞; -2) ∪ (-1; 3)
Պատ՝․ (-∞; -2) ∪ (-1; 3)
Վարժ․ 164

ա) (x2+x)(5x+5)<0
x*(x+1)(5x+5)=0=> [ x=0; x+1=0; 5x+5=0 => [ x=0; x= -1

x ∈ (-∞; -1) ∪ (-1; 0)
Պատ՝․ (-∞; -1) ∪ (-1; 0)
բ) (3x+12)(2x+10)(x2-2x)>0
(3x+12)(2x+10)x(x-2)=0 => [ 3x+12=0; 2x+10=0; x=0; x-2=0=>[ x= -4; x= -5; x=0; x=2

x ∈ (-∞; -5) ∪ (-4; 0) ∪ (2; +∞)
Պատ՝․ (-∞; -5) ∪ (-4; 0) ∪ (2; +∞)
գ) (6x2-12x)(x+4)<0
x*(6x-12)*(x+4)=0 => [x=0; 6x-12=0; x+4=0 => [ x=0; x=2; x= -4

x ∈ (-∞; -4) ∪ (0; 2)
Պատ՝․ (-∞; -4) ∪ (0; 2)
դ) (2x2-16x)(4x+4)(7x-21)>0
x*(2x-16)(4x+4)(7x-21)=0 => [ x=0; 2x-16=0; 4x+4=0; 7x-21=0=>[x=0; x=8; x= -1; x=3

x ∈ (-∞; -1) ∪ (0; 3) ∪ (8; +∞)
Պատ՝․ (-∞; -1) ∪ (0; 3) ∪ (8; +∞)
Վարժ․ 165

ա) (2-x)(x+3)(x-7)<0
(2-x)(x+3)(x-7)=0=> [ 2-x=0; x+3=0; x-7=0 => [ x=2; x= -3; x=7

x ∈ (-3; 2) ∪ (7; +∞)
Պատ՝․ (-3; 2) ∪ (7; +∞)
բ) (5-x)(x-3)(x+12)>0
(5-x)(x-3)(x+12)=0 => [ 5-x=0; x-3=0; x+12=0=> [ x=5; x=3; x= -12

x ∈ (-∞; -12) ∪ (3; 5)
Պատ՝․ (-∞; -12) ∪ (3; 5)
գ) (3x-4)(1-x)(2x+1)>0
(3x-4)(1-x)(2x+1)=0=> [3x-4=0; 1-x=0; 2x+1=0=> [x=4/3; x=1; x= -1/2 (-0,5)

x ∈ (-∞; -1/2) ∪ (1; 4/3)
Պատ՝․ (-∞; -1/2) ∪ (1; 4/3)
դ) (2x-5)(7x+3)(x+8)<0
(2x-5)(7x+3)(x+8)=0=> [2x-5=0; 7x+3=0; x+8=0=> [x=5/2; x= -3/7; x= -8

x ∈ (-∞; -8) ∪ (-3/7; 5/2)
Պատ՝․ (-∞; -8) ∪ (-3/7; 5/2)
ե) (5x-6)(6x-5)(1-x)(3x+1)>0
(5x-6)(6x-5)(1-x)(3x+1)=0=> [5x-6=0; 6x-5=0; 1-x=0; 3x+1=0=> [x=6/5; x=5/6; x=1; x= -1/3

x ∈ (-1/3; 5/6) ∪ (1; 6/5)
Պատ՝․ (-1/3; 5/6) ∪ (1; 6/5)
զ) (10x-1)(x+2)(7x-4)(7x+5)<0
(10x-1)(x+2)(7x-4)(7x+5)=0=> [10x-1=0; x+2=0; 7x-4=0; 7x+5=0=> [x=1/10; x= -2; x=4/7; x= -5/7

x ∈ (-2; -5/7) ∪ (1/10; 4/7)
Պատ՝․ (-2; -5/7) ∪ (1/10; 4/7)
Վարժ․ 166

ա) (x-3)(x2-3x+2)>0
(x-3)*x*(x-3+2)=0=> (x-3)*x*(x-1)=0=> [x-3=0; x=0; x-1=0=> [x=3; x=0; x=1

x ∈ (0; 1) ∪ (3; +∞)
Պատ՝․ (0; 1) ∪ (3; +∞)
բ) (2-x)(x2-x-12)<0
(2-x)(x2-x-12)=0=> [2-x=0; x2-x-12=0=> [x=2; x= -3; x=4

x ∈ (-3; 2) ∪ (4; +∞)
Պատ՝․ (-3; 2) ∪ (4; +∞)
գ) (x2-3x-4)*(x2+x-12)<0
(x2-3x-4)*(x2+x-12)=0
x2-3x-4=0
x2+x-12=0
x= -1; x=4; x= -4; x=3

x ∈ (-4; -1) ∪ (3; 4)
Պատ՝․ (-4; -1) ∪ (3; 4)
դ) (x2-5x-6)(x2+2x-15)>0
(x2-5x-6)(x2+2x-15)=0
x2-5x-6=0
x2+2x-15=0
x= -1; x=6; x= -5; x=3

x ∈ (-∞; -5) ∪ (-1; 3) ∪ (6; +∞)
Պատ՝․ (-∞; -5) ∪ (-1; 3) ∪ (6; +∞)
Վարժ․ 167

ա) (x2-16)(x2-x-2)(x+2)>0
x2-16=0=> x=4
x2-x-2=0=> x1= -1; x2=2
x+2=0=0=> x= -2
x ∈ (-4; -2) ∪ (-1; 2) ∪ (4; +∞)
Պատ՝․ (-4; -2) ∪ (-1; 2) ∪ (4; +∞)
բ) (4+x)(9-x2)(x2-2x+1)=0
4+x=0=> x= -4
9-x2=0=> x=3; x= -3
x=1
x ∈ (-∞; -4) ∪ (-3; 1) ∪ (1; 3)
Պատ՝․ (-∞; -4) ∪ (-3; 1) ∪ (1; 3)
Վարժ․ 168

ա) (x-2)2(x-1)>0
(x2-4x+4)(x-1)=0=> x*(x-4+4)*(x-1)=0=> x=1
x2-4x+4=0
D=b2-4ac=16-16=0
x=4/2=2

x ∈ (1; 2) ∪ (2; +∞)
Պատ՝․ (1; 2) ∪ (2; +∞)
բ) (x+4)(x+3)2<0
(x+4)*(x2+6x+9)=0=> [x+4=0; x2+6x+9=0=> [x= -4; x= -3

x ∈ (-∞; -4)
Պատ՝․ (-∞; -4)
գ) (3x-1)3(x+1)>0
(27x3-27x2+9x-1)*(x+1)=0
x*(27x2-27x+9-1)*(x+1)=0=> [x+1=0=> x= -1
27x2-27x+9-1=0=> 27x2-27x+8=0
a=27; b= -27; c=8
D=b2-4ac=729-864=⊘

x ∈ (-∞; -1) ∪ (1/3; +∞)
Պատ՝․ (-∞; -1) ∪ (1/3; +∞)
դ) (x+2)(5x+3)2<0
(x+2)(25x2+30x+9)=0=>[x+2=0; 25x2+30x+9=0=> [x= -2; -3/5
25x2+30x+9=0
a=25; b=30; c=9
D=b2-4ac=900-900=0
x= -30/50= -3/5

x ∈ (-∞; -2)
Պատ՝․ (-∞; -2)
Վարժ․ 169

ա) (2-4x)(x2-x-2)<0
(2-4x)(x2-x-2)=0=> [2-4x=0; x2-x-2=0
2-4x=0=>x=2/4=1/2
x2-x-2=0
D=1-(-8)=9
x1=1-3/2= -2/2= -1
x2=1+3/2=4/2=2

x ∈ (-1; 1/2) ∪ (2; +∞)
Պատ՝․ (-1; 1/2) ∪ (2; +∞)
բ) (-4-3x)(x2+3x-4)>0
(-4-3x)(x2+3x-4)=0=> [-4-3x=0; x2+3x-4=0
-4-3x=0=> x= -4/3
x2+3x-4=0
D=9-(-16)=25
x1= -3-5/2= -8/2= -4
x2= -3+5/2=2/2=1

x ∈ (-∞; -4) ∪ (-4/3; 1)
Պատ՝․ (-∞; -4) ∪ (-4/3; 1)
գ) (3x-7)(x2+2x+2)<0
(3x-7)(x2+2x+2)=0=> [3x-7=0; x2+2x+2=0
3x-7=0=> x=7/3
x2+2x+2=0
D=4-8= -4=⊘
x ∈ (-∞; 7/3)
Պատ՝․ (-∞; 7/3)
դ) (5x-8)(x2-4x+5)>0
(5x-8)(x2-4x+5)=0=> [5x-8=0; x2-4x+5=0
5x-8=0=> x=8/5
x2-4x+5=0
D=16-20= -4=⊘
x ∈ (8/5; +∞)
Պատ՝․ (8/5; +∞)
ե) (x2-4x+5)(x2-4x+3)(x-1)<0
(x2-4x+5)(x2-4x+3)(x-1)=0
x2-4x+5=0
D=16-20=⊘
x2-4x+3=0
D=16-12=4
x1=4-2/2=2/2=1
x2=4+2/2=6/2=3

x ∈ (-∞; 1) ∪ (1; 3)
Պատ՝․ (-∞; 1) ∪ (1; 3)
զ) (-x2+6x-10)(x2-5x+6)(x-2)>0
(-x2+6x-10)(x2-5x+6)(x-2)=0
-x2+6x-10=0
D=36-40=⊘
x2-5x+6=0
D=25-24=1
x1=5-1/2=4/2=2
x2=5+1/2=6/2=3

x ∈ (-∞; 2) ∪ (2; 3)
Պատ՝․ (-∞; 2) ∪ (2; 3)