Վարժ․ 163

ա) (x-1)(x-3)(x-5)>0

(x-1)(x-3)(x-5)=0=> [ x-1=0; x-3=0; x-5=0 => [ x=1; x=3; x=5

x ∈ (1; 3) ∪ (5; +∞)

Պատ՝․ (1; 3) ∪ (5; +∞)

բ) (x-1)(x-2)(x-4)<0

(x-1)(x-2)(x-4)=0=> [ x-1=0; x-2=0; x-4=0 => [ x=1; x=2; x=4

x ∈ (-∞; 1) ∪ (2;4)

Պատ՝․ (-∞; 1) ∪ (2;4)

գ) (x+1)(x-1)(x-2)>0

(x+1)(x-1)(x-2)=0=> [ x+1=0; x-1=0; x-2=0 => [x= -1; x=1; x=2

x ∈ (-1; 1) ∪ (2; +∞)

Պատ՝․ (-1; 1) ∪ (2; +∞)

դ) (x+2)(x+1)(x-3)<0

(x+2)(x+1)(x-3)=0=> [ x+2=0; x+1=0; x-3=0 => [x= -2; x= -1; x=3

x ∈ (-∞; -2) ∪ (-1; 3)

Պատ՝․ (-∞; -2) ∪ (-1; 3)

Վարժ․ 164

ա) (x2+x)(5x+5)<0

x*(x+1)(5x+5)=0=> [ x=0; x+1=0; 5x+5=0 => [ x=0; x= -1

x ∈ (-∞; -1) ∪ (-1; 0)

Պատ՝․ (-∞; -1) ∪ (-1; 0)

բ) (3x+12)(2x+10)(x2-2x)>0

(3x+12)(2x+10)x(x-2)=0 => [ 3x+12=0; 2x+10=0; x=0; x-2=0=>[ x= -4; x= -5; x=0; x=2

x ∈ (-∞; -5) ∪ (-4; 0) ∪ (2; +∞)

Պատ՝․ (-∞; -5) ∪ (-4; 0) ∪ (2; +∞)

գ) (6x2-12x)(x+4)<0

x*(6x-12)*(x+4)=0 => [x=0; 6x-12=0; x+4=0 => [ x=0; x=2; x= -4

x ∈ (-∞; -4) ∪ (0; 2)

Պատ՝․ (-∞; -4) ∪ (0; 2)

դ) (2x2-16x)(4x+4)(7x-21)>0

x*(2x-16)(4x+4)(7x-21)=0 => [ x=0; 2x-16=0; 4x+4=0; 7x-21=0=>[x=0; x=8; x= -1; x=3

x ∈ (-∞; -1) ∪ (0; 3) ∪ (8; +∞)

Պատ՝․ (-∞; -1) ∪ (0; 3) ∪ (8; +∞)

Վարժ․ 165

ա) (2-x)(x+3)(x-7)<0

(2-x)(x+3)(x-7)=0=> [ 2-x=0; x+3=0; x-7=0 => [ x=2; x= -3; x=7

x ∈ (-3; 2) ∪ (7; +∞)

Պատ՝․ (-3; 2) ∪ (7; +∞)

բ) (5-x)(x-3)(x+12)>0

(5-x)(x-3)(x+12)=0 => [ 5-x=0; x-3=0; x+12=0=> [ x=5; x=3; x= -12

x ∈ (-∞; -12) ∪ (3; 5)

Պատ՝․ (-∞; -12) ∪ (3; 5)

գ) (3x-4)(1-x)(2x+1)>0

(3x-4)(1-x)(2x+1)=0=> [3x-4=0; 1-x=0; 2x+1=0=> [x=4/3; x=1; x= -1/2 (-0,5)

x ∈ (-∞; -1/2) ∪ (1; 4/3)

Պատ՝․ (-∞; -1/2) ∪ (1; 4/3)

դ) (2x-5)(7x+3)(x+8)<0

(2x-5)(7x+3)(x+8)=0=> [2x-5=0; 7x+3=0; x+8=0=> [x=5/2; x= -3/7; x= -8

x ∈ (-∞; -8) ∪ (-3/7; 5/2)

Պատ՝․ (-∞; -8) ∪ (-3/7; 5/2)

ե) (5x-6)(6x-5)(1-x)(3x+1)>0

(5x-6)(6x-5)(1-x)(3x+1)=0=> [5x-6=0; 6x-5=0; 1-x=0; 3x+1=0=> [x=6/5; x=5/6; x=1; x= -1/3

x ∈ (-1/3; 5/6) ∪ (1; 6/5)

Պատ՝․ (-1/3; 5/6) ∪ (1; 6/5)

զ) (10x-1)(x+2)(7x-4)(7x+5)<0

(10x-1)(x+2)(7x-4)(7x+5)=0=> [10x-1=0; x+2=0; 7x-4=0; 7x+5=0=> [x=1/10; x= -2; x=4/7; x= -5/7

x ∈ (-2; -5/7) ∪ (1/10; 4/7)

Պատ՝․ (-2; -5/7) ∪ (1/10; 4/7)

Վարժ․ 166

ա) (x-3)(x2-3x+2)>0

(x-3)*x*(x-3+2)=0=> (x-3)*x*(x-1)=0=> [x-3=0; x=0; x-1=0=> [x=3; x=0; x=1

x ∈ (0; 1) ∪ (3; +∞)

Պատ՝․ (0; 1) ∪ (3; +∞)

բ) (2-x)(x2-x-12)<0

(2-x)(x2-x-12)=0=> [2-x=0; x2-x-12=0=> [x=2; x= -3; x=4

x ∈ (-3; 2) ∪ (4; +∞)

Պատ՝․ (-3; 2) ∪ (4; +∞)

գ) (x2-3x-4)*(x2+x-12)<0

(x2-3x-4)*(x2+x-12)=0

x2-3x-4=0

x2+x-12=0

x= -1; x=4; x= -4; x=3

x ∈ (-4; -1) ∪ (3; 4)

Պատ՝․ (-4; -1) ∪ (3; 4)

դ) (x2-5x-6)(x2+2x-15)>0

(x2-5x-6)(x2+2x-15)=0

x2-5x-6=0

x2+2x-15=0

x= -1; x=6; x= -5; x=3

x ∈ (-∞; -5) ∪ (-1; 3) ∪ (6; +∞)

Պատ՝․ (-∞; -5) ∪ (-1; 3) ∪ (6; +∞)

Վարժ․ 167

ա) (x2-16)(x2-x-2)(x+2)>0

x2-16=0=> x=4

x2-x-2=0=> x1= -1; x2=2

x+2=0=0=> x= -2

x ∈ (-4; -2) ∪ (-1; 2) ∪ (4; +∞)

Պատ՝․ (-4; -2) ∪ (-1; 2) ∪ (4; +∞)

բ) (4+x)(9-x2)(x2-2x+1)=0

4+x=0=> x= -4

9-x2=0=> x=3; x= -3

x=1

x ∈ (-∞; -4) ∪ (-3; 1) ∪ (1; 3)

Պատ՝․ (-∞; -4) ∪ (-3; 1) ∪ (1; 3)

Վարժ․ 168

ա) (x-2)2(x-1)>0

(x2-4x+4)(x-1)=0=> x*(x-4+4)*(x-1)=0=> x=1

x2-4x+4=0

D=b2-4ac=16-16=0

x=4/2=2

x ∈ (1; 2) ∪ (2; +∞)

Պատ՝․ (1; 2) ∪ (2; +∞)

բ) (x+4)(x+3)2<0

(x+4)*(x2+6x+9)=0=> [x+4=0; x2+6x+9=0=> [x= -4; x= -3

x ∈ (-∞; -4)

Պատ՝․ (-∞; -4)

գ) (3x-1)3(x+1)>0

(27x3-27x2+9x-1)*(x+1)=0

x*(27x2-27x+9-1)*(x+1)=0=> [x+1=0=> x= -1

27x2-27x+9-1=0=> 27x2-27x+8=0

a=27; b= -27; c=8

D=b2-4ac=729-864=⊘

x ∈ (-∞; -1) ∪ (1/3; +∞)

Պատ՝․ (-∞; -1) ∪ (1/3; +∞)

դ) (x+2)(5x+3)2<0

(x+2)(25x2+30x+9)=0=>[x+2=0; 25x2+30x+9=0=> [x= -2; -3/5

25x2+30x+9=0

a=25; b=30; c=9

D=b2-4ac=900-900=0

x= -30/50= -3/5

x ∈ (-∞; -2)

Պատ՝․ (-∞; -2)

Վարժ․ 169

ա) (2-4x)(x2-x-2)<0

(2-4x)(x2-x-2)=0=> [2-4x=0; x2-x-2=0

2-4x=0=>x=2/4=1/2

x2-x-2=0

D=1-(-8)=9

x1=1-3/2= -2/2= -1

x2=1+3/2=4/2=2

x ∈ (-1; 1/2) ∪ (2; +∞)

Պատ՝․ (-1; 1/2) ∪ (2; +∞)

բ) (-4-3x)(x2+3x-4)>0

(-4-3x)(x2+3x-4)=0=> [-4-3x=0; x2+3x-4=0

-4-3x=0=> x= -4/3

x2+3x-4=0

D=9-(-16)=25

x1= -3-5/2= -8/2= -4

x2= -3+5/2=2/2=1

x ∈ (-∞; -4) ∪ (-4/3; 1)

Պատ՝․ (-∞; -4) ∪ (-4/3; 1)

գ) (3x-7)(x2+2x+2)<0

(3x-7)(x2+2x+2)=0=> [3x-7=0; x2+2x+2=0

3x-7=0=> x=7/3

x2+2x+2=0

D=4-8= -4=⊘

x ∈ (-∞; 7/3)

Պատ՝․ (-∞; 7/3)

դ) (5x-8)(x2-4x+5)>0

(5x-8)(x2-4x+5)=0=> [5x-8=0; x2-4x+5=0

5x-8=0=> x=8/5

x2-4x+5=0

D=16-20= -4=⊘

x ∈ (8/5; +∞)

Պատ՝․ (8/5; +∞)

ե) (x2-4x+5)(x2-4x+3)(x-1)<0

(x2-4x+5)(x2-4x+3)(x-1)=0

x2-4x+5=0

D=16-20=⊘

x2-4x+3=0

D=16-12=4

x1=4-2/2=2/2=1

x2=4+2/2=6/2=3

x ∈ (-∞; 1) ∪ (1; 3)

Պատ՝․ (-∞; 1) ∪ (1; 3)

զ) (-x2+6x-10)(x2-5x+6)(x-2)>0

(-x2+6x-10)(x2-5x+6)(x-2)=0

-x2+6x-10=0

D=36-40=⊘

x2-5x+6=0

D=25-24=1

x1=5-1/2=4/2=2

x2=5+1/2=6/2=3

x ∈ (-∞; 2) ∪ (2; 3)

Պատ՝․ (-∞; 2) ∪ (2; 3)